

The importance of logs You won't see what you don't log^Waudit

Tim (Wadhwa-)Brown CX EMEAR Security Architecture August 2018

Introduction

Introduction

- TLDR
- # whoami
- # cat .plan

TLDR

- What this talk is not about
 - Building a SOC in 30 minutes
- What this talk is about
 - Why logging goes wrong
 - How to start to plan your logging requirements
 - Case studies
 - Where to go next

whoami

- Tim (Wadhwa-)Brown
 - Background in telecoms and financial services sectors
 - 14+ years at Portcullis (and now Cisco)
 - ~12 years as a CREST consultant
 - Head Of Research, CX EMEAR
 Security Architecture
- >120 CVEs to my name
 - Covering Windows, Linux, AIX and Solaris platforms
 - Userland through to kernel
- Current focus is operational security

cat .plan

- Background
- Common failings
- The "what" of auditing
- Case studies
- Recommendations
- Conclusions

Background

Slow response is expensive

- Average breach identification time is in excess of 6 months
- 50% of businesses suffered breaches with a financial impact greater than \$500,000

Ineffective or missing logging is a real problem

Source: Cisco Security Advisory EMEAR assessment reports (2017)

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

"In over 50% of cases, logging will be insufficient to determine root cause, identify actions or attribute the actor."

IRR consultant

Why does this matter?

- We're expected to give expert guidance from both a blue and red team perspective
- Our customers want to mature their security posture from a defensive standpoint
- The first two questions after every breach are "how?" and "when?"...
 -followed by "are they still active?"

Common failings

Common failings

- Time is a rarely understood domain
- Logs grow (and grow and ...)
- We're still using syslog for the most part
- · Logging is passive, auditing is active
- People miss (and don't miss) what they don't understand
- Knowing what "good" looks like is hard
- Every failed security check should result in an audit event

Time is a rarely understood domain

- TZ=Europe/London?
 - Ideally logs and events should always be timestamped against UTC

Logs grow (and grow and ...)

- They may not be collected
- They almost certainly aren't processed
- You may well need to agree a suitable retention period
 - Check local regulations in case there is a legal minimum

We're still using syslog for the most part

- If we're lucky there may be remote ingestion using a SIEM agent
 - Often times there isn't
- And sometimes, the ingestion leverages syslog which is an insecure protocol
 - There's a question of integrity and attestation

Logging is passive, auditing is active

- Logging often relies on defaults
 - It's really for debugging in many cases
- Auditing is rarely turned on
 - In cases where auditing is available, it's may not be ingested into the SIEM
- Configuring and enabling auditing involves thinking about TTPs and the IOCs they leave behind

People miss (and don't miss) what they don't understand

- IOCs are often missed
 - Would you spot a brute force attempt on an internal web application?
- Exceptions are left unhandled
 - Wouldn't you want to know why a service keeps on crashing?

Every failed security check should result in an audit event

• Perhaps not but...

- Humans aren't the best at correlating ad-hoc events
- Every attempt to brute force a vulnerability might look different but audit events tied to the root cause can be measured, benchmarked and SIEMs can be set to trigger alarms on thresholds

The "what" of auditing

Source	Category	Urgency	Events	Use case
DHCP	User/device attribution	High	IP assignments	Trace victims
VPN	User/device attribution	High	IP assignments	Trace victims
802.1x	User/device attribution	High	IP assignments	Trace victims
DNS	User/device attribution	High	DNS lookups	Identify C2
Firewall	User/device attribution	High	Blocked and successful connections	Trace victims
Email	Email activity	High	Message routing with headers and subjects	Discover campaigns
Proxy	Network activity	High	Blocked and successful connections	Identify C2
OS auditing	System activity	Medium	Authentication, configuration changes and security events	Identify breaches
AntiVirus	System activity	Medium	Malware discovery and removal	Identify contained breaches
Vulnerability scans	Vulnerability status	Medium	Vulnerability attribution	Attribute attack to vulnerability
AD authentication	User/device attribution	Low	Authentication and authorisation	Identify lateral movement
Netflow	Network activity	Low	Connections from enterprise to data center	Investigate access

Source: Aaron Varrone, Cisco Security Incident Response Services (CSIRS)

Key Considerations				
Does the event meet legal requirements (no PII, etc)?				
Validate that sensitive data has been randomised or removed (passwords, etc)				
Ensure data is in the right format				
Confirm event feed contains enough information to be useful (see Tab 4)				
Event Types				
Input validation failures				
Change of privilege failures/successes				
Authentication failure/successes				
Session state changes				
Suspicious behaviour and overuse				
File uploads and writes				
Access control failures/successes				
Application and system errors				
Any high-risk (those which may impact Confidentiality, Integrity or Availability (CIA) of the system) changes/administrative tasks				
Sensitive Data				
Personally identifiable information (PII)				
Application source code				
Session IDs				
Access tokens				
Passwords				
Connection strings				
Encryption keys and other master secrets				
Bank account or payment card holder data				
Data of a higher security classification than the logging system is allowed to store				
Commercially-sensitive information				
Information it is illegal to collect in the relevant jurisdictions				
Information a user has opted out of collection, or not consented to e.g. use of do not track, or where consent to collect has expired				
Consider replacing sensitive data with hashed equivalents in instances where these events need to be tracked				

Practice breeds confidence

- If a system is important enough to warrant a penetration test
- But you can't tell when they...
 - Connected to the network
 - Began their Nessus scans
 - Ran Burp active scan against the admin interface
- You may not be collecting the right audit feeds...
 - Or you might not know where to look

Document "good" and curate "bad"

- Figure out what audit events occur and when
- Benchmark them
- Institute BAU policies to check key audit events hourly, daily or weekly
 - Get into a habit
- Incidents are not the right time to be learning about your SIEM's query language

Case studies

Case studies

- Have we improved in 15 years?
- Developing in-house
- Whose been sitting at my shell prompt?
- A little knowledge can be a dangerous thing
- The oldest server in the data center

Have we improved in 15 years?

- 15 years ago, I was sitting on the other side of the fence
 - Senior Operational Security Analyst
 - Working for a retail bank
- Problem
 - We wanted to know when people ran sudo and why
- Solution
 - HIPS & RBAC events fed into SQL Server
 - BAU processes to review events

Developing inhouse

- Development house x are building a new application
- Threat modeling has identified where attacks are likely
- They didn't build auditing in
 - No way to determine what the normal cadence of password resets was and when there was a peak

Whose been sitting at my shell prompt

- A system has been changed and rebooted
- It's unclear by whom and under what circumstances
- Management are ready to throw a contractor under the bus
- The log server was full

A little knowledge can be a dangerous thing

- The admins have been subjected to a red team recently
- I'm there to do a penetration test
- They're all fired up watching their event logs
- STOP! What's making all those connections to "C\$"
- Turned out it was cached connections being reactivated when they used the search bar
- 12 hours of my life I won't get back

The oldest server in the data center

- The box has been compromised
- Data has been wiped
- · Yay! They have logs
 - Both application and OS
 - The problem is that the application logs weren't suitably granular (HH:SS)
- Boo! There is literally no documentation on what the logs actually mean
 - Reversing mainframe binaries is fun but wasteful
 - We eventually found an OS event in the logs that acted as a crib

Have we improved in 15 years?

 \cdot l'll let you be the judge \odot

Recommendations

Recommendations

- Engagement
- Full stack auditing
- Threat modeling

Engagement

- With procurement
 - Build requirements into the procurement process
 - In particular, consider SaaS and PaaS vendors and their ability to service your requirements – systems you don't own are a particular pain point when collecting audit event feeds
- With platform teams
 - Ensure that the correct value of "good" is known
- With application support teams
 - Ensure auditing is switched on
- With developers
 - Ensure that detective controls are included in functional requirements
 - Check that you're not reliant logs that are intended for debugging
 - Reject unknown exceptions

Full stack auditing

- Auditing every element of the stack could improve visibility
 - Network
 - •OS
 - Filesystem
 - Database
 - Application
 - Web server
 - User
- Get to know your SMEs

Threat modeling

- From an defensive standpoint we should look at
 - Assets
 - Actors
 - Threats
 - Impact
- Where are the detective controls?
- Frameworks can help
 - Microsoft: STRIDE
 - MITRE: ATT&CK (TTP) and CAPEC (weaknesses)
- Does the solution help or hinder visibility?

Conclusions

Conclusions

- What have we learnt?
- Next steps?

What have we learnt?

- Logging and auditing are rarely done well
 - Logging is for developers
 - Auditing should be for operators
- Everyone gets breached, plan for it
- Wouldn't it be nice to understand your environment
- · Don't take my word for it...
 - <u>https://www.ncsc.gov.uk/blog</u>
 <u>-post/learning-love-logging</u>

Next steps?

- Configure
 - Windows Event Log
 - · Microsoft are obviously the canonical source
 - Linux Auditd
 - There are some great publicly shared policies on GitHub for this
- · Collect the audit event feeds
 - There are open source solutions out there that DON'T use syslog but which do allow for audit event feeds to be collected in a secure fashion
- Build auditing into your SDLC
- Examine the audit events and learn what "good" looks like

Links

- NCSC
 - <u>https://www.ncsc.gov.uk/guidance/</u> introduction-logging-securitypurposes
- Windows
 - <u>https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/appendix-l--events-to-monitor</u>
 - <u>https://github.com/SwiftOnSecurity</u> /sysmon-config
- Linux
 - <u>https://github.com/bfuzzy/auditd-</u> <u>attack</u>
 - <u>https://github.com/Neo23x0/auditd</u>

twadhwab@cisco.com

