
ALL RIGHTS RESERVED

The copyright in this document, which contains information of a proprietary nature, is vested in Portcullis Computer Security Limited of the UK. The contents
of this document may not be used for purposes other than that for which it has been supplied. It may not be reproduced, either wholly or in part, in any way

whatsoever, nor may it be used by, or its contents divulged to, any person whatsoever without the prior written permission of Portcullis Computer Security Limited.

© Copyright Portcullis Computer Security Limited 2013

COMMERCIAL-IN-CONFIDENCE

MEMORY SQUATTING: ATTACKS
ON SYSTEM V SHARED MEMORY

VERSION: 1.0
DATE: 13/11/2013

TASK NUMBER:
System_V_Shared_Memory_Attacks_Whitepaper

PREPARED FOR

Paul Docherty
Director

Portcullis Computer Security Ltd
The Grange Barn

Pike’s End
Pinner

Middlesex
HA5 2EX

Tel: +44 20 8868 0098
Email:

PREPARED BY

Tim Brown
Head Of Research

Portcullis Computer Security Limited
The Grange Barn, Pike's End

Pinner, Middlesex
HA5 2EX

United Kingdom

Tel: +44 20 8868 0098
Email: reports@portcullis-security.com

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 2 OF 16

CONTENTS

1 INTRODUCTION
4

2 BACKGROUND TO SYSTEM V SHARED
MEMORY 5

3 SUMMARY
6

4 PATIENT 0: CVE-2013-0254
7

5 CONCLUSIONS
13

6 REFERENCES
14

7 THANKS
15

APPENDIX A: ABOUT PORTCULLIS
COMPUTER SECURITY LIMITED 16

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 3 OF 16

Version Author Role Date Comments

0.1 TMB Head Of Research 10/02/2013
1st Draft

Whitepaper Report

0.2 TMB Head Of Research 03/03/2013

2nd Draft Whitepaper
Report - Added viability

of attacks, Debian
analysis, results

and opportunities
for memory

corruption attacks

0.3 TMB Head Of Research 04/03/2013
3rd Draft Whitepaper
Report - Restructured

0.4 TMB Head Of Research 24/05/2013
4th Draft

Whitepaper Report

0.5 HJM Editorial 08/11/2013
Review of

Whitepaper Report

1.0 TMB Head Of Research 13/11/2013 Publication

Please quote Task Number
System_V_Shared_Memory_Attacks_Whitepaper

in all correspondence with Portcullis.

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 4 OF 16

1 Introduction
Rather than representing a definitive guide, this document represents a review of the specific
security issues identified during Portcullis Computer Security Ltd’s recent research into System
V shared memory segments and their usage. What follows should, however, provide a high-
level summary of issues, impacts and methods of remediation in cases where System V shared
memory segments are used in an insecure fashion.

This paper was released as part of Tim Brown’s 44CON 2013 presentation entitled "I Miss LSD".

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 5 OF 16

2 Background To System V Shared
Memory

System V shared memory segments are a mechanism by which applications running on POSIX
alike systems can perform inter-process communications. In general terms, one process will
create and write to the shared memory segment whilst other subservient processes will read
from it. When more than one process requires the capability to write to a given segment, a
system of semaphores is typically used to prevent inconsistencies in the segment’s state.

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 6 OF 16

3 Summary
System V shared memory segments created with shmget() are assigned an owner, a group
and a set of permissions intended to limit access to the segment to designated processes
only. The owner of a shared memory segment can change the ownership and permissions
on a segment after its creation using shmctl(). Any subsequent processes that wish to attach
to the segment can only do so if they have the appropriate permissions. Once attached, the
process can read or write to the segment, as per the permissions that were set when the
segment was created.

In the process of performing this research, we determined that a significant number of
applications using shared memory segments set permissions on the segments they created
that did not effectively limit access. As such, it would often be possible for other users to
tamper with previously created shared memory segments or to read their contents. Moreover,
similar weaknesses were identified in how applications set permissions on the semaphores
intended to marshal access to these segments.

It is important to note that our research is by no means the first in this area; indeed Google
fixed a similar issue (143859) in Chrome in 2012, however, no other similar research has
attempted to analyse the problem in a systemic manner.

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 7 OF 16

4 Patient 0: CVE-2013-0254
Qt applications such as those shipped with the KDE Software Compendium have been found
to create System V shared memory segments with insecure permissions:

$ ipcs -a | grep 1474595
0x00000000 1474595 user 777 1024 2 dest
$ ipcs -p | grep 1474595
1474595 user 6120 6155
$ ps -aef | grep 6120
user 6120 1 0 Nov28 ? 00:02:49 /usr/bin/plasma-desktop

Initially it was believed that the vulnerable code was part of the KDE Software Compendium,
however, by running KDE applications under a debugger as follows:

Breakpoint 2, shmget () at ../sysdeps/unix/syscall-template.S:82
82 in ../sysdeps/unix/syscall-template.S
(gdb) bt
bt
#0 shmget () at ../sysdeps/unix/syscall-template.S:82
#1 0x00007ffff613ac41 in ?? () from /usr/lib/x86_64-linux-gnu/libQtGui.so.4
#2 0x00007ffff6252b9f in QRasterWindowSurface::prepareBuffer(QImage::Format,
QWidget*) () from /usr/lib/x86_64-linux-gnu/libQtGui.so.4
#3 0x00007ffff6252e07 in QRasterWindowSurface::setGeometry(QRect const&) () from
/usr/lib/x86_64-linux-gnu/libQtGui.so.4

...it was possible to determine that the culprit was in fact Qt. Specifically, whilst it is obscured
in this backtrace, the code path includes calls to QNativeImage(width, height, format, false,
widget) which makes use of the following code:

xshminfo.shmid = shmget(IPC_PRIVATE, xshmimg->bytes_per_line * xshmimg->height, IPC_CREAT | 077
7);

Here, shmget() is called to implement Qt’s X11 protocol support for a shared buffer between
the X server and the client. This method of IPC between X clients and servers allows for
increased performance when rendering large pixmaps. As you can see, in this case shmget()
is called with permissions of "0777", which effectively maps to "rwx" in each of the user, group
and other permissions contexts. Since the X server is typically running as root, it is believed
there should be no need for client applications that run with less privileges to create shared
memory segments with these weakened permissions.

Whilst performing root cause analysis of the issue above it was determined that the
QSharedMemory and QSystemSemaphore classes also created shared memory segments
(using shmget()) and semaphores (using semget()) with insecure permissions. Below is an
example of the affected code where QSharedMemory can be seen:

s = new QSharedMemory("test");
s->attach();
s->create(65535, QSharedMemory::ReadOnly);

Executing this code was found to result in the following shared memory segment being
created:

$ ipcs -a
...

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 8 OF 16

0x51001223 3047473 user 666 65535 0

Note: The effect of QSharedMemory::ReadOnly is discussed later in this paper.

4.1 Analysing Debian GNU/Linux

Whilst researching the problem, we contacted the Qt security team to discuss whether the
observed behaviour around Qt’s usage of System V shared memory segments was desirable.
Since the Qt security team were able to quickly confirm that this was not the case, we then
proceeded to contact the operators of Debian Code Search to request a dump of all Debian
GNU/Linux packages that call shmget(), in order to accurately determine how widespread the
issue was. Armed with this list of packages, we began, naively, to analyse the various source
packages with grep. This strategy proved ineffective, so we contacted the Debian and Red
Hat security teams to see if they could aid us in our analysis.

Eventually, we were able to produce some simple static analysis scripts using Coccinelle,
which allowed us to quickly and accurately analyse all of the C and C++ code we’d previously
downloaded for insecure calls to shmget() and semget(). Coccinelle is a tool that was initially
conceived almost as a semantic patcher. It understands the C language and allows you to
construct generic patches for classes of bug. It has since been adopted by the Linux kernel,
and a number of security researchers have began leveraging it - not just to fix bugs but also
to find them. Indeed, Kees Cooke spoke at the last Linux kernel security summit on using
it for exactly this.

The Coccinelle script we used in this instance is reproduced below:

@shmget@
expression key, size, shmflag;
position p;
@@

shmget@p(key, size, shmflag)

@script:python depends on shmget@
p << shmget.p;
shmflag << shmget.shmflag;
size << shmget.size;
@@

import re

if (re.match(".*[0-9][0-9][1-9]([\D]+.*|)$", shmflag) or re.match(".*[0-9][1-9][0-9]([\D]+.*|)$
", shmflag) or re.match(".*S_I.(GRP|OTH).*", shmflag)):
 if (re.match(".*bytes_per_line.*", size)):
 print "%s:%s: dangerous shmget(): %s (used for X)" % (p[0].file, p[0].line, shm
flag)
 else:
 print "%s:%s: dangerous shmget(): %s" % (p[0].file, p[0].line, shmflag)
elif (re.match(".*[a-z_]+[a-z_]+.*", shmflag)):
 if (re.match(".*bytes_per_line.*", size)):
 print "%s:%s: potentially dangerous shmget(): %s (used for X)" % (p[0].file, p[
0].line, shmflag)
 else:
 print "%s:%s: potentially dangerous shmget(): %s" % (p[0].file, p[0].line, shmf
lag)

You’ll note that the script above breaks down the use of shmget() into 4 classes. Firstly, we
classify whether the call to shmget() explicitly sets weak permissions when it creates shared
memory segments. Secondly, we examine whether it is likely that the shared memory segment
will be used to implement Qt’s X11 protocol support for a shared buffer between the X server

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 9 OF 16

and the client (indicated by the presence of bytes_per_line in the size calculation. In cases
where the call to shmget() does not explicitly set weak permissions, we further categorised
those cases where the shmflag variable is set from another variable, as this can potentially
be dangerous too.

4.2 Running Some Numbers

So what did our analysis show? Of the 486 Debian GNU/Linux packages that call shmget(),
we found:

• 89 cases of shmget() being called insecurely for implementing X11 protocol support
(58 packages)

• 212 cases of shmget() being called insecurely for other purposes (114 packages)
• 80 cases of shmget() being called potentially insecurely for implementing X11 protocol

support (44 packages)
• 45 cases of semget() being called insecurely (26 packages)
• 31 cases of semget() being called potentially insecurely (23 packages)

It is important to note that of those packages that call shmget() for other purpose, some of
those may actually use it for implementing X11 protocol support but do not directly reference
bytes_per_line in their calls to shmget().

4.3 Viability Of Attacks

Using smaSHeM, it was possible to successfully mount a couple of attacks on the System V
shared memory segments. In the context of the Qt Framework, we determined that weak
permissions on the created segments may allow for the disclosure or corruption of pixmaps
(GUI artifacts) being transmitted to the X server. The process by which the former was
performed is described below:

1) Extract the shared memory segment you wish to view using smaSHeM as another user.
2) Call QImage(data, x, y, BITSPERPIXEL) with incrementing values of x and y.
3) Use the QImage::save() function to save each possible image.
4) Examine each of the generated images using a tool such as KDE’s Gwenview to find the
right dimensions of the pixmap.

It is worth noting that we did try a number of other techniques to identify the correct
dimensions (such as applying an OCR and analysing the entropy of the resultant images),
however, these did not prove reliable.

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 10 OF 16

4.4 Opportunities For Memory Corruption Attacks

By now, some of you may be considering whether it is possible to perform memory corruption
attacks against applications that utilise System V shared memory segments. To answer this
question we examined how they are affected by the traditional controls that exist in POSIX
alike systems to secure dynamically executed memory. We looked at two common operating
systems that support shared memory segments: GNU/Linux (which of course is the base
for Debian GNU/Linux) and AIX. We considered both ASLR and W^X memory corruption
mitigations in this analysis.

ASLR

As it turns out, shared memory segments behave much as one might expect with
respect to ASLR. On GNU/Linux, shared memory segment locations are randomised when
randomize_va_space is set to 1 or higher, when a shared memory segment is attached to
using shmat() whilst on AIX no randomisation of the shared memory segment location occurs.
We did note, however, that it is possible to determine the location at which a shared memory
segment has been created by examining /proc/<pid>/maps and looking for mappings such
as "/SYSV00000000 (deleted)". Note that in the case of GNU/Linux, this presupposes that the
developer hasn’t explicitly asked for the shared memory segment to be mapped to a specific
fixed location with shmat().

W^X

Having looked at how ASLR affects shared memory segment behaviour, our attention then
turned to W^X memory corruption mitigations. The shared memory segment permissions
can be affected in two ways: Firstly, as discussed previously, an owner, a group and a set
of permissions can be assigned when the segment is created with the shmget() call and,
secondly, the owner of a shared memory segment can change the ownership and permissions
on a segment after it has been created using the shmctl() call. In addition, the mapping
can be designated as read-only when attached using the shmat() call (used to implement
QSharedMemory::ReadOnly).

So how do GNU/Linux and AIX honour these various permissions?

We discovered that the permissions are honoured when assigned through calls to shmget()
and shmctl() on both AIX and GNU/Linux. Attempts by us to write to shared memory segments
without appropriate write permissions resulted in a segmentation fault. Similarly, attempting
to write to a shared memory segment that has been mapped read-only using the shmat()
call will also result in a segmentation fault. However, there is one area where behaviour is
inconsistent: the way AIX and GNU/Linux enforce execute permissions that may have been
assigned when the shared memory segment is created. Specifically, we observed that this
permission is not honoured, either by AIX or GNU/Linux. In the case of AIX, the segment

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 11 OF 16

can be considered executable even when this permission has explicitly not been assigned,
whilst in the case of GNU/Linux, the segment is not executable even when this permission
has been explicitly assigned.

In General

Based on a cursory manual review of a selection of the packages identified earlier in this
research, we found no instances of shared memory weaknesses where memory corruption
was a likely outcome. In the cases where it was being utilised by the X11 protocol support for
a shared buffer between the X server and the client, any such vulnerabilities would ultimately
reside in the X server, whilst in other cases we typically found the memory to be accessed as
a sequential list of structures of a given type. Whilst we could of course modify the contents
of these using smaSHeM, no cases were identified where members of these structures were
assigned with address pointers.

4.5 System V Shared Memory Segments And Keys

As described above, the System V shared memory security model is primarily based on
the ownership and permissions that have been applied. Whilst performing this research,
we noticed that calls to shmget() require a key parameter. From a historian’s perspective,
we wondered if this was originally conceived as a security control, and it does appear that
historically developers were meant to derive this key parameter from a filename using ftok().
The main page for ftok() on Debian GNU/Linux, however, indicates that:

"Of course no guarantee can be given that the resulting key_t is unique. Typically, a best
effort attempt combines the given proj_id byte, the lower 16 bits of the inode number, and
the lower 8 bits of the device number into a 32-bit result. Collisions may easily happen, for
example between files on /dev/hda1 and files on /dev/sda1"

The presence of this information, coupled with the fact that shmat() does not require an
attacker to know the key, leads us to believe that it is unlikely that key is, or ever was, a
security control.

Qt’s Key Implementation

In the case of Qt, we observed that QSharedMemory implementation abstracts this operation
for portability and performs ftok(filename, ’Q’). Qt creates the filename by concatenating the
local temporary directory with "qipc_sharedmemory_", part of the key (a string, not to be
confused with the shmget() key parameter) supplied when instantiating a QSharedMemory
object and a sha1() hash of part of the very same key. For example, given a key of "test99",
Qt will use a file of "/tmp/qipc_sharedmemory_test<hash of test99>" (the exact algorithm
can be found in qt4-x11-4.8.2+dfsg/src/corelib/kernel/qsharedmemory.cpp). Additionally, we
identified that Qt uses a similar mechanism for the construction of semget() keys.

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 12 OF 16

Since both are predictable, we decided to take a look to see if there were any interesting
race conditions that the implementation falls foul of. In general terms it appears that Qt’s key
usage is robust, however, we were able to identify that the presence of a symbolic link with
the predicted filename causes the shared memory segment creation to fail in a manner that
gives rise to NULL pointer dereferences, if the result of create() isn’t correctly checked before
attempts are then made to access the requested shared memory segment.

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 13 OF 16

5 Conclusions
• System V shared memory is often created with weak permissions.
• Usage of System V shared memory by X11 applications is particularly problematic.
• Qt Project patched Qt APIs (CVE-2013-0254), Oracle patched Java JRE

(CVE-2013-1500), Google patched Chrome independently.
• No progress has been made on the problem more generally by either Red Hat or

Debian.
• Coccinelle is an effective tool for performing static analysis on large corpuses of C.
• Memory corruption attacks against System V shared memory are unlikely.

5.1 Future Research

Having analysed System V shared memory segments and their usage in some depth, and
having looked at the implications of calling the associated functions in an insecure fashion, we
would strongly recommend that other mechanisms used by POSIX alike systems to perform
inter-process communications are also examined. These include:

• UNIX sockets
• System V messages (msg*)
• POSIX shared memory (shm_*) - actually covered with an example vulnerability in

"I Miss LSD"
• POSIX messages (mq_*)

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 14 OF 16

6 References
• http://labs.portcullis.co.uk/presentations/i-miss-lsd/
• http://codesearch.debian.net/
• http://kernsec.org/wiki/index.php/Linux_Security_Summit_2012/Abstracts/Cook
• http://coccinelle.lip6.fr/papers/stuart_thesis.pdf

http://labs.portcullis.co.uk/presentations/i-miss-lsd/
http://codesearch.debian.net/
http://kernsec.org/wiki/index.php/Linux_Security_Summit_2012/Abstracts/Cook
http://coccinelle.lip6.fr/papers/stuart_thesis.pdf

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 15 OF 16

7 Thanks
• Mark Lowe and Tim Varkalis of Portcullis Computer Security Ltd
• Michael Stapelberg for Debian Code Search
• Various reponders from the Red Hat, Debian, Qt and KDE security teams

COMMERCIAL-IN-CONFIDENCE

M
EM

O
R

Y
 S

Q
U

A
TT

IN
G

:
A

TT
A

C
K

S
O

N
 S

Y
ST

EM
 V

 S
H

A
R

ED
 M

EM
O

R
Y

 1
.0

TASK NO:
System_V_Shared_Memory_Attacks_Whitepaper

COMMERCIAL-IN-CONFIDENCE PAGE 16 OF 16

Appendix A About Portcullis Computer
Security Limited
Since our formation in 1986 Portcullis has developed into a widely recognized and respected
provider of Information Security services with the strong foundation that comes from being
an independent, mature and financially stable Company.

Portcullis' revered reputation stems from our Security Testing Service, launched back in
1996, which flourished into the professional and high quality service that our Clients benefit
from today. This is further endorsed by Portcullis' array of industry accreditations and the
numerous accredited CHECK Team Leaders / Members and CREST Application / Infrastructure
Consultants we have, which stands testament to the investment Portcullis makes in its staff,
training and R&D.

Over the years Portcullis has also expanded its key portfolio of services, which now fall into
4 main disciplines - security testing, digital forensics, cyber defence and security consultancy
services. The most recent addition to our range of specialist services has been the launch of
our Cyber Threat Analysis and Detection Service (CTADS®) and eDisclosure Service. These
specialist IT security services not only broaden Portcullis' offering to its Clients but they also
enhance and compliment each other, enabling us to deliver comprehensive solutions to our
Clients as a trusted security advisor and dependable security partner.

Today, Portcullis is in the proud position of employing one of the largest multidiscipline
information security resources in the UK across two locations, in Pinner (Middlesex) and
Cheltenham (Gloucestershire), and has extended this capability further with international
offices in San Francisco (USA) and Madrid (Spain). To accommodate the continued growth of
our services and staff, we have recently commissioned a new purpose built Headquarters in
Northwood that will include an HMG standards based secure facility.

With a client base encompassing Central and Local Government, Banks, Manufacturing,
Charities, Telecoms, Utilities, Insurance, Retail, Healthcare, Energy, Education, Fast Moving
Consumer Goods, Technology, Financial Services, Media and many international Blue Chip
clients operating in EMEA and the Americas Portcullis' breadth of expertise and experience
is second to none.

	Front cover
	Table of contents
	1 Introduction
	2 Background To System V Shared Memory
	3 Summary
	4 Patient 0: CVE-2013-0254
	4.1 Analysing Debian GNU/Linux
	4.2 Running Some Numbers
	4.3 Viability Of Attacks
	4.4 Opportunities For Memory Corruption Attacks
	4.5 System V Shared Memory Segments And Keys

	5 Conclusions
	5.1 Future Research

	6 References
	7 Thanks
	Appendix A About Portcullis Computer Security Limited

